The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers.

نویسندگان

  • Brendon M Baker
  • Albert O Gee
  • Robert B Metter
  • Ashwin S Nathan
  • Ross A Marklein
  • Jason A Burdick
  • Robert L Mauck
چکیده

Aligned electrospun scaffolds are promising tools for engineering fibrous musculoskeletal tissues, as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by increasing porosity, while at the same time preserving overall scaffold anisotropy. To test this hypothesis, poly(epsilon-caprolactone) (a slow-degrading polyester) and poly(ethylene oxide) (a water-soluble polymer) were co-electrospun from two separate spinnerets to form dual-polymer composite fiber-aligned scaffolds. Adjusting fabrication parameters produced aligned scaffolds with a full range of sacrificial (PEO) fiber contents. Tensile properties of scaffolds were functions of the ratio of PCL to PEO in the composite scaffolds, and were altered in a predictable fashion with removal of the PEO component. When seeded with mesenchymal stem cells (MSCs), increases in the starting sacrificial fraction (and porosity) improved cell infiltration and distribution after three weeks in culture. In pure PCL scaffolds, cells lined the scaffold periphery, while scaffolds containing >50% sacrificial PEO content had cells present throughout the scaffold. These findings indicate that cell infiltration can be expedited in dense fibrous assemblies with the removal of sacrificial fibers. This strategy may enhance in vitro and in vivo formation and maturation of functional constructs for fibrous tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells

Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...

متن کامل

Development of antimicrobial chitosan based nanofiber dressings for wound healing applications

Objective(s): Chitosan based composite fine fibers were successfully produced via a centrifugal spinning technology. This study evaluates the ability of the composites to function as scaffolds for cell growth while maintaining an antibacterial activity. Materials and methods: Two sets of chitosan fiber composites were prepared, one filled with anti-microbial silver nanoparticles and another on...

متن کامل

Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds.

Electrospun nanofibrous scaffolds have become widely investigated for tissue engineering applications, owing to their ability to replicate the scale and organization of many fiber-reinforced soft tissues such as the knee meniscus, the annulus fibrosus of the intervertebral disc, tendon, and cartilage. However, due to their small pore size and dense packing of fibers, cellular ingress into elect...

متن کامل

Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation.

The fibrous tissues prevalent throughout the body possess an ordered structure that underlies their refined and robust mechanical properties. Engineered replacements will require recapitulation of this exquisite architecture in three dimensions. Aligned nanofibrous scaffolds can dictate cell and matrix organization; however, their widespread application has been hindered by poor cell infiltrati...

متن کامل

Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 29 15  شماره 

صفحات  -

تاریخ انتشار 2008